L’

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D. o N—

Courtesy: Most slides are adopted from CSE-573 (Washington U.)}original
slides for the textbook, and CS-188 (UC. Berkeley).
. |

e’ .

Local Search

-/
—r/ lterative improvement algorithms

~—

S—

* Previously: Search to find best path to goal

* Systematic exploration of search space.

* Today: a state is solution to problem
* For some problems path is irrelevant.

* e.g., 8-queens

* In such cases, can use iterative improvement algorithms;

* keep a single ‘“current” state, try to improve it

\/ ~ Examples

* n-queens

Local search algorithms

State space = set of "complete"” configurations

Find configuration satisfying constraints,

* e.g., all n-queens on board, no attacks
In such cases, we can use local search algorithms
Keep a single "current” state, try to improve it.

Very memory efficient

* duh - only remember current state

\/ Constraint Satisfaction vs. Constraint Optimization

=

: : Optimization
Satisfaction P
Constraint satisfaction Constraint Optimization
reach the goal node optimize(objective fn)

guided by heuristic fn

You can go back and forth between the two problems. Typically in the same

< O e

complexity class
—

" Local Search it
- ocal Search and Optimization

* Local search:
* Keep track of single current state
* Move only to “neighboring” state (defined by operators)

* |gnore previous states, path taken

* Advantages:
* Use very little memory

* Can often find reasonable solutions in large or infinite (continuous) state spaces.

* “Pure optimization” problems
* All states have an objective function
* Goal is to find state with max (or min) objective value
* Does not quite fit intfo path-cost/goal-state formulation

* Local search can do quite well on these problems.

\‘/_/

- 4

_/ Trivial Algorithms

o N/

S’

* Random Sampling

* Generate a state randomly

* Random Walk

* Randomly pick a neighbor of the current state

* Why even mention these?

* Both algorithms are asymptotically complete.

* If the state space is finite, each state is visited at a fixed rate asymptotically. -/

A T e)

- N/

\/ Hill-climbing search
| . >

“a loop that continuously moves towards increasing value”

o

* terminates when a peak is reached

* Aka greedy local search

Value can be either

* Obijective function value

* Heuristic function value (minimized)

Hill climbing does not look ahead of the immediate neighbors

Can randomly choose among the set of best successors

* if multiple have the best value

“climbing Mount Everest in a thick fog with amnesia™

L(ws) < hthe)~
~ N/

S h\ J.

S

\/ Example: n-Queens

—

_, * State

* All n queens on the board in some configuration

e But each in a different column

e Successor function

* Move single queen to another square in same column.

* How to convert this into an optimization problem?

s
\/ < Hill-climbing search: 8-queens

o

Nt

* Result of hill-climbing in this case...

N\
<
O
MCAI MV A

SA Iocql.r;li;l;mum with h :{; FFF"FS }

P IS Smsa» 7~
I—F : Foi lwre r

Hill-climbing performance on n-queens

~—

_* Hill-climbing can solve large instances of n-queens (n = 106) in a few

(ms)seconds

* 8 queens statistics: ol
* State space of size =17 million /D_ q /o

_—
Starting from random state, steepest-ascent hill climbing solvef of problem

instances

It takes 4 steps on average when it succeeds, 3 when it gets stuck

D
CEEEE———— L]

When “sideways” moves are allowed, performance improves ...

When multiple restarts are allowed, performance improves even more

v\‘/_/

— Hill Climbing Drawbacks

These are all local maxima

Local maxima

Objecti‘ e function Iobal maximum

shoulder

local maximum Di(]gOI‘lCI'

"flat" local maximum

Plateaus

ridges

current »state space

state St ’

@ Trajectories, difficulties

\\
\‘\

.’\\ ; ‘;\.... -I\
“\\ A8 S
',’:’Q
\ ’ ' T

.“ \ A : ‘:.u.....
\\\ / { :ii‘ '."0".‘ < z

““‘ \\\\'

g

&
Iy 0’0

NG
'''''
LIS
"
R
" :
'''''''''''
ooooooo
e et
..

.....
&l
-
2o
.
-
&

| \o.”” —
\/ Escaping Shoulders: Sideways Move

—

* [£nho downhill (uphill) moves, allow sideways moves in
F

hope that algorithm can escape

* Must limit the number of possible sideways moves to \4

objecti\[e function » nlobal maximum
) Y

avoid infinite loops

* For 8-queens
local maximum

* Allow sideways moves with limit of 100 "flat" local maximum

G

* Raises percentage of problems solved from 14 to 94%

»state space

* However.... “

V4 State —
* 21 steps for every successful solution u
* 64 for each failure S &f
e ™ ¥ 15 \/

s/

= Hill Climbing Properties

S~

~—r

* Not complete. Why?
* Terrible worst case running time.

* Simple, O(1) space, and often very fast.

\/ Tibu Search -
« - £

S

* Prevent returning quickly to the same state /_\

* Keep fixed length queue (“tabu list”) - T 4

* Add most recent state to queue; drop oldest cec-e _Z-:Z y y—-\-n

* Never move to a tabu state

* Properties:

* As the size of the tabu list grows, hill-climbing will asymptotically become “non-

redundant” (won’t look at the same state twice)

* In practice, a reasonable sized tabu list (say 100 or so) improves the performance of hill
climbing in many problems /

17
A R)

\/ Hill Climbing: Stochastic Variations

[e———— — \/

e

S’

* When the state-space landscape has local minima, any search that moves only in

the greedy direction cannot be complete
* Random walk, on the other hand, is asymptotically complete
* Idea: Combine random walk & greedy hill-climbing

* At each step do one of the following:

{ * Greedy: With prob. p move to the neighbor with largest value

* Random: With prob. 1-p move to a random neighbor

[I f Gready <lhoico wth ok - O
l/ A

" \/ ") Q /

)\

| 4
\/ \/\/ Hill-climbing with random restarts

If at first you

. ’ inl
*“If at first you don’t succeed, try, try again! don’t succeed,

v. Different variations ‘EY(‘ESX ‘\r)) = E(%) o~

* For each restart: run until termination vs. run for a fixed time

* Run a fixed number of restarts or run indefinitely s (wet
-\ AL
. Analysis VE(3-VD+4) =36 -\-‘—(("’
* Say each search has probability p of success \ 3 ‘E{-Pccke' “
* e.g., for 8-queens, p = 0.14 with no sideways moves S wnccess amoVes

* Expected number of restarts? ’>)/r, - \/ - ~ .y

* Expected number of steps taken? -.—\,-.- —-\‘7—'
IF35}=E{S + 5 + -4 }"EE{Sc*"“l'gT/T ‘Lw ./
——, ,ql‘_ e (’T-l)"'
g P A e\

\/ ~—~
/ Hill-Climbing with Both Random Walk & Random
Sampling

* At each step do one of the three
* Greedy: move to the neighbor with largest value Ph
< * Random Walk: move to a random neighbor P

e Random Restart: Start over from a new, random state / "I’,-Pz

\/ Simulated Annealing

* |dea: escape local maxima by allowing some “bad” moves N

~ * but gradually decrease their size and frequency
* method proposed in 1983 by IBM researchers for solving VLSI layout problems l

g

* A Physical Analogy:

* Imagine letting a ball roll downhill on the function surface X
* Now shake the surface, while the ball rolls, &
* Gradually reducing the amount of shaking 7< 4

S

Simulated Annealing (cont.)

* Annealing = physical process of cooling a liquid = frozen

simulated annealing:

* free variables are like particles

* seek “low energy” (high quality) configuration

* slowly reducing temp. T with particles moving around randomly

high T: probability of “locally bad” move is higher

low T: probability of “locally bad” move is lower

typically, T is decreased as the algorithm runs longer

* i.e., there is a “temperature schedule”

S

Nt

N7/

</ °

Tg.m/

(

\nent

\

.

Simulated Annealing (cont.)

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
State T, a “temperature” controlling prob. of downward steps

MAKE-NODE(INITIAL-STATE[problem])

for t< 1 to oo do -9, __E.—
tare—> T — schedule[t]/ Qog ¢
if 7= 0 then return current
a——

COEEEE——

o neat—a randomly selected successor of current

° e
‘ oo posbie AF<— VALUE[next] — VALUE[current] ey Y% Ve e
moVe if AE > 0 then current < next > Z =\ T
=

else current < next only with probability e® £/ ~o

2 ol
I N

Acceptation probability

0.8

0.6

0.4

0.2

Effect of temperature

Simulated Annealing in practice

* Other applications:
* Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout,
Image Processing, ...
* Optimal, given that T is decreased sufficiently slow.

* Is this a useful guarantee?

* Convergence can be guaranteed if at each step, T drops no more quickly than

—>» C/log n, C=constant, n = # of steps so far.
——

/ Local beam search

—’
* |dea: Keeping only one node in memory is an extreme reaction to memory
~ k b est
problems. ——N So[
* Keep track of k states instead of one A” i \'\)
* Initially: k randomly selected states h —p
QLo OO0 O
* Next: determine all successors of k states — —
* If any of successors is goal = finished kb
[Sefect+ &< bestT
* Else select k best from successors and repeat ~w
=

\/ r

_/ Local Beam Search z
J

e

S’

* Not the same as k random-start searches run in parallel!

* Searches that find good states recruit other searches to join them

K
* Problem: quite often, all k states end up on same local hill ~—
/ O"" O
* |dea: Stochastic beam search gl.. /\
* Choose I-successors randomly, biased towards good ones QAN 00 (chl.
* Observe the close analogy to nci:rural selection! 2 i L S
dly * e
lm', 14 ‘ by by "'ul. ot

P‘:Q L0
ROl /) }/ i ot

aftrat 2 gj [’.: —EL ?;lqi"' L =27"l:

\/ Genetic algorithms

—

—/* Local beam search, but...

* A successor state is generated by combining two parent states 713 S296Y

* Start with k randomly generated states (
_/-

CE—
-

* A state is represented as a string over a finite alphabet (often a string of Os and

—
[em——— a—

1s) - -

-

* Evaluation function (fitness function). Higher = better /\

f— \/
* Produce the next generation of states by selec’rion,r, and mutation

24748552

32752411

24415124

\32543213

fitness:

#non-attacking queens

probability of being

regenerated

in next generation

—*v‘;
24748552

32752411

24415124
/:—\

<

Ic)
lection

7\

n-queens example

/7(@
/

53224_(86522—-

3274162

24752411

_.

2475241

B 1 2 4

_p

2124\\ N

24415411

—.q

d)
Cross—0Over

/

22415417,

le)

Mutation

C)wao»k- '|w>/

| &7 N—
_/ < n-queens example (cont.)

Has the effect of “jumping” to a completely different new part of the |
search space (quite non-local))

w

Comments on Genetic Algorithms

* Genetic algorithm is a variant of “stochastic beam search” ~~

¢ Positive points
* Random exploration can find solutions that local search can’t
* (via crossover primarily)
* Appealing connection to human evolution

* “neural” networks, and “genetic” algorithms are metaphors!

* Negative points

* Large number of “tunable” parameters

/*
a—

* Difficult to replicq’re-Toerformqnce from one problem to another
* Lack of good empirical studies comparing to simpler methods
* Useful on some (small?) set of problems but no convincing evidence that GAs are better . /

N~ (U st 4

than hill-climbing w/random restarts in general

